Algorithmic Probability — Its Discovery — Its Properties and Application to Strong AI
نویسنده
چکیده
We will first describe the discovery of Algorithmic Probability — its motivation, just how it was discovered, and some of its properties. Section two discusses its Completeness — its consummate ability to discover regularities in data and why its Incomputability does not hinder to its use for practical prediction. Sections three and four are on its Subjectivity and Diversity — how these features play a critical role in training a system for strong AI. Sections five and six are on the practical aspects of constructing and training such a system. The final Section, seven, discusses present progress and open problems.
منابع مشابه
Algorithmic Probability—Theory and Applications
We first define Algorithmic Probability, an extremely powerful method of inductive inference. We discuss its completeness, incomputability, diversity and subjectivity and show that its incomputability in no way inhibits its use for practical prediction. Applications to Bernoulli sequence prediction and grammar discovery are described. We conclude with a note on its employment in a very strong A...
متن کاملRevolution of Artificial Intelligence and the Internet of Objects in the Customer Journey and the Air Sector
Artificial intelligence (AI) is a discipline interested in the processes and methods that allow a machine to perform tasks related to human intelligence. It offers many opportunities related to problem solving, quick decision-making, increasing efficiency and reducing costs. Because of its so various fields of application, artificial intelligence is at the heart of the new industrial revolution...
متن کاملFractional Probability Measure and Its Properties
Based on recent studies by Guy Jumarie [1] which defines probability density of fractional order and fractional moments by using fractional calculus (fractional derivatives and fractional integration), this study expands the concept of probability density of fractional order by defining the fractional probability measure, which leads to a fractional probability theory parallel to the classical ...
متن کاملTowards a Universal Theory of Artiicial Intelligence Based on Algorithmic Probability and Sequential Decision Theory
Decision theory formally solves the problem of rational agents in uncertain worlds if the true environmental probability distribution is known. Solomonoo's theory of universal induction formally solves the problem of sequence prediction for unknown distribution. We unify both theories and give strong arguments that the resulting universal AI model behaves optimal in any computable environment. ...
متن کاملArtificial intelligence & genetics
Artificial intelligence (AI) is the development of computer systems that are able to perform tasks that normally require human intelligence. Artificial intelligence (AI) is a wide-ranging tool that enables people to rethink how we integrate information, analyze data, and use the resulting insights to improve decision making—and already it is transforming every walk of life. AI has application...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009